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Econometrica, Vol. 50, No. 6 (November, 1982) 

COSTS OF ADJUSTMENT AND THE SPATIAL PATTERN OF A 
GROWING OPEN CITY 

BY ODED HOCHMAN AND DAVID PINES' 

This paper investigates the effect of costs of adjustment on the dynamic characteristics 
of intra-urban resource allocation. The analysis is concentrated on the development 
pattern of an open city within a system of many cities both in steady-state and in 
variable-state economies. Competitive equilibrium of the urban system as a whole is also 
discussed and compared to Pareto optimum allocation. Some of the results that character- 
ize the resource allocation under static analysis are reestablished for the dynamic case as 
well. But others that follow from comparative statics are shown to be incorrect under the 
dynamic analysis. 

1. INTRODUCTION 

THIS PAPER INVESTIGATES the effect of costs of adjustment on the dynamic 
characteristics of intra-urban resource allocation. The analysis is mainly concen- 
trated on the development pattern of a single city within a system of many cities, 
both in steady-state and in variable-state economies. Competitive equilibrium of 
the urban system as a whole is also discussed and compared to Pareto optimum' 
allocation. In elaborating on the competitive allocation, a distinction is made 
between perfect foresight and naive expectations of the urban developers. 

The dynamic characteristics of urban development were almost entirely ig- 
nored in the early urban models, which were mainly concerned with long-run 
analysis. By assuming that housing is produced by land only (Alonso [1], 
Mirrlees [15]), or that the stock of housing is perfectly malleable (Muth [17]), the 
difficulty associated with the durability of the housing stock was bypassed. More 
recently, the implications of this durability of the housing stock has become a 
focal point of interest (Muth [18], von Rabenau [21], Cummings and Schultze [8], 
and Robson [20]). However, many of these papers have ignored the spatial 
aspect. Those few studies which have tried to incorporate both the dynamic and 
spatial aspects, have adopted a putty-clay approach (see Bliss [5]), allowing the 
stock to change, if at all, only after it is fully depreciated; the resulting pattern of 
change is waves of developments, as suggested by Muth [18] and Brueckner [6]. 

In a recent paper (Hochman and Pines [13]) we allowed for continuous 
increase of stock, with adjustment costs. We used a very simple normative model, 
in which the cost of accommodating a population of predetermined size that 
increases through time, was minimized. To simplify the analysis, we also assumed 
constant per capita consumption of housing services through time and through 
space. Furthermore, we did not allow the stock of housing to decrease in any 
area of the city. These constraints place our earlier work in the category of 
irreversible-investment models (see Arrow and Kurz [3]). 

'We would like to thank Richard Arnott, Elhanan Helpman, and an anonymous referee for their 
valuable comments and suggestions. Arnott's review was especially thorough and helpful. Any 
remaining errors are ours alone. 
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The purpose of this paper is to enrich the economic content of that model by 
emphasizing its positive aspect, and to remove the above-mentioned restrictions 
by allowing substitution between housing and other goods,2 and allowing decline 
of the stock. The analysis deals with the development of an open city3 within a 
system of many cities. Workers are attracted to the city when they can obtain 
there at least as high a level of utility as they can obtain elsewhere. Conceptually, 
then, our model is very similar to that of von Rabenau [21], and Cummings and 
Schultze [8]. Like von Rabenau's and unlike Fujita's [9] model, it allows both 
increase and decrease of the housing stock. But, like Fujita we differ from von 
Rabenau and Cummings and Schultze in our focus on the spatial aspect of the 
development process. Von Rabenau ignores this aspect and aggregates housing 
across locations; Cummings and Schultze ignore the housing sector entirely. 

Our city has a dimensionless central business district (CBD), where city 
residents are employed by an industry whose only input is labor and whose 
output is a composite good which can be consumed, exported, and used as an 
input in the housing industry. Each laborer belongs to a single household. 
Households are situated in residential zones which are characterized by the time 
it takes to travel from the zone to the CBD. Households are utility maximizers, 
consuming, at each point in time, housing services and the composite good. All 
households are identical in tastes, skills, and welfare levels. 

Non-resident landlords, maximizers of the present value of net gains, construct 
housing stock in the residential zones and rent it to laborers' households. The 
housing stock is produced at a rate dependent on the quantity of composite good 
invested and the level of existing stock of housing. 

We relate the development pattern of the typical city to the state of the 
economy. We say that the economy is in a steady state if the rate of return, travel 
time, labor productivity, and the current utility level of residents do not change 
with time. We say that the city is in a stationary state if in each zone the stock of 
housing and the price of housing do not change in time. (It is possible that the 
economy as a whole is in a steady state and yet the city is not in a stationary 
state.) 

Our analysis shows that the optimal development pattern of a typical city 
which is developed from scratch may be characterized as follows: 

1. At any given stage of the development, density will decline with distance 
from the center as will housing rents and housing values. 

2. If the economy as a whole is in a steady state, the housing stock increases 
continuously from the very beginning of its development. The rate of increase 
declines through time and converges to zero in the stationary state. The quantity 
of resources devoted to construction declines continuously. In the stationary state 
this quantity becomes just sufficient to prevent the decline of the housing stock. 

2This extension is a dynamic analogue of Alonso's [1] and Muth's [17] extensions of Mohring and 
Harwitz' [16] fixed-proportion model in the static case. 

3A city is said to be "open" if people are able to migrate freely and costlessly to and from it. In 
this case the utility level of the population is fixed at its economy-wide level, while the city population 
size adjusts. In a closed city, population size is fixed and the utility level adjusts. 



COSTS OF ADJUSTMENT 1373 

In the process of development each zone is gradually transformed from a net 
importer of resources to a net exporter. 

3. If the economy as a whole is in a variable state, then the development 
pattern depends on the expectation formation regime. If the economy is charac- 
terized by a decline of either the utility level or of the interest rate, the housing 
stock will still grow continuously, but the other characteristics of development 
specified in 2 will not necessarily be valid. If the economy is characterized by an 
increase either in the utility level or in the interest rate and if the developers are 
myopic, the housing stock may begin to decline (unlike the pattern described in 1 
above) after the early stages of growth, and may eventually even be abandoned 
altogether. The effect of an increase in the accessibility cost of the zone or a 
decrease in the productivity of producing the non-housing output is similar to 
that of an increase in the interest rate. 

4. An increase in utility coupled with an improvement in the transportation 
system, especially in the outer rings, is likely to result in the eventual deterio- 
ration of the city center and in the development of the suburbs. 

In addition, it is shown that: 
5. In the case of perfect foresight, the present value of the net export of the city 

(surplus) is fully capitalized in the land values plus the value of the existing stock 
of housing. (The benefit of a project can therefore be measured by the increase in 
the value of the housing stock and land values in the area.) In the case of perfect 
foresight, the competitive allocation is consistent with the Pareto optimum. 

The plan of the paper is as follows: Section 2 presents the model, its 
underlying assamptions, and the equilibrium conditions, as well as the relations 
between the surplus of the city and the real estate values, and between the 
competitive allocation and the Pareto optimum. Section 3 discusses the develop- 
ment pattern of a given zone when all exogenous variables are constant. Section 
4 is devoted to an analysis of the spatial growth pattern. The effect of changes in 
the exogenous variable on the development pattern is the subject of Section 5. 
Reservations and possible extensions of the model are discussed in Section 6. 

2. THE MODEL 

The model is designed to characterize long-run spatial development in a small 
city within a system of open cities under a competitive regime. The cities are 
open in the sense that households move costlessly between any pair of cities and 
have perfect knowledge of the wages and prices prevailing in each city of the 
system. 

The urban population is composed of homogeneous households (in terms of 
both preferences and initial holdings). Each household supplies one unit of labor 
services per period. Land and housing capital stock are owned by absentee 
landlords.4 

4The assumption of absentee landlords is convenient but not consequential to the results (see 
Section 6). 
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The city is monocentric. In the center there is an export-import terminal, 
where the production of a composite good is concentrated. It is surrounded by 
residential zones. Each residential zone is denoted by i; i = 1,2, . . . , such that 
zone i = n is closer to the center than i = n + 1. This spatial layout can be 
explained by the extremely high cost of shipping the composite good within the 
city, or by the nuisance created by the production process and the existence of 
minimum environmental standards.5 

The spatial pattern of the city generates commuting costs. Let Ti(t) units of a 
composite good be required to transport a worker from residential zone i to the 
center, where he works, in period t. Commuting costs increase with distance. 
Thus, T (t) < T +I(t). It is assumed that the cost of transportation is indepen- 
dent of the volume of traffic (no congestion effect).6 

A unit of labor in period t produces w(t) units of the composite good. Thus, 
total production of the composite good in the city equals w(t)N(t), where N(t) is 
the size of the city population in period t.7 

Since the city is small, the welfare level, u(t), attainable elsewhere in the 
country, is exogeneously determined. Costless migration implies that households 
are attracted to the city only if they can achieve there the utility level u(t). The 
utility level of a household depends on its consumption of housing services Bi(t), 
and of a composite good Zi(t).8 The consumption of housing services is mea- 
sured by the quantity of housing stock (e.g. square feet of net floor space) 
occupied per period. The relative price of housing services, in terms of the 
composite good, Pi(t), depends on the location of the house. Hence, given the 
utility level, u(t), the compensated demands are 

Zi(t) = z(Pi(t),u(t)) and 

Bi(t) = b(Pi(t),u(t)). 

A household earns its marginal productivity, w(t), and spends its income on 
the composite good Zi(t), housing services Pi(t)Bi(t), and transportation Ti(t). 
Thus, its budget constraint is10 

(1) z(Pi(t), u(t)) + Pi(t)b(Pi(t), u(t)) + Ti(t) = w(t). 

5We avoid the more realistic explanation-economies of scale and agglomeration-as these imply 
that the optimum city cannot be sustained competitively. The concluding section discusses the 
extension of the model to incorporate these aspects. 

6As this assumption is unrealistic, further extensions of the model should consider this point, as 
well as the investment in improving transportation (see Section 6). 

7The implications of the model are unchanged if we assume that the composite good is produced 
by a linear homogeneous function of labor and capital and that the supply of capital is infinitely 
elastic. 

8The composite good consumed may be different from that produced locally. For example, the 
city may specialize in an export composite good, the demand for which is infinitely elastic. The prices 
of both are assumed to be unitary. This can explain the assumption that the shipment of the 
composite good produced is extremely expensive while the shipment of the composite good consumed 
is not, and thus justify the concentration of production. 

9Note that rent and price of housing services are considered synonymous. 
10Note that the budget constraint implies that the city residents live on their current income and 

all landlords are absentees. Relaxation of this assumption is discussed in Section 6. 
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The total supply of housing services at any given period is equal to the housing 
stock Hi(t). The change in the latter is the net construction. The production 
function of net construction (net addition to the stock) is assumed to be 
homogeneous of first degree in the stock Hi(t), the composite good input Ci(t), 
and a predetermined supply of land Li(t).11 Accordingly, 

(2) Hi~( t) h h(Hi (t), Ci (t), Li (t)), 

(3) Li(t) =Li, 

where a dot denotes differentiation with respect to time and the parameter Li is 
the fixed quantity of land in zone i. 

We assume: 

(4a) h, < O, hll < O; 

(4b) h2>O, h22<O, h(O,C,L)-h as C -oo; 

(4c) h3 > O, h33 < O for C > O; 

(4d) h12 < O, h13 < O, h23 > O; 

(4e) h( ) >O for Hi(t) = O, C1(t) > O; 

(4f) h( ) O for Hi(t) >O, Ci(t)=O; and 

(4g) h( ) = O for Hi(t) = Ci(t) = 0, 

where hj denotes differentiation of h( ) with respect to thej variable. 
Thus, our model allows for decline, expansion, and maintenance of the 

housing stock at a constant level. The marginal rate of depreciation, (-aH/aH), 
is (- h ). We assume that this rate is a nondecreasing function of the stock. The 
marginal productivities of land and the composite good are assumed to be 
decreasing. The marginal productivity of the composite good is assumed to be 
decreasing with the housing stock, reflecting the increasing difficulty of adding 
new units of housing as density increases.'2 

Now, consider a landlord who owns all land and buildings in zone i and is 
both a developer and a supplier of housing services there. Given the initial stock 
of housing, Hi(T), the expected rates of discount, r(t), and prices, Pi(t) for t> T, 

1 lAccording to this specification the rate of change of the stock is independent of age. This may 
perhaps be realistic with respect to brick and concrete houses but not with respect to frame houses. 

'2The function h(-) can be considered a transformation function. Thus, hI < 0 and h11 ? 0 reflect 
the weak concavity of the function. In a conventional growth model, the relation between H and h is 
linear. In our model, the relation is generalized to take into account the adverse effect of density on 
maintenance, congestion, and pollution costs (for a more detailed discussion see Hochman and Pines 
[13]). These effects are also reflected in h2l, h3l < 0. The presence of the costs of adjustment is 
reflected in h22 < 0. The conventional rationale for the costs of adjustment (see Lucas [14]) is relevant 
to our case as well. Additional arguments for including adjustment costs are elaborated in our earlier 
paper. 
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the landlord maximizes over Hi(t) and Ci(t): 

(5) V(H1(T)) = J00[Hi(t)Pi(t)-Ci(t)]e -r(t)(t -) dt 

subject to (2), (3), 

(6) Hi(T) =Hi 

and 

(7) Ci(t) >0. 

The necessary conditions for the maximization problem are (in abbreviated 
notation): 

(8a) f3ih2 < 1, 

(8b) (Ah2-1)Ci = O, and 

(9) Ai = rA - Pi - AhAl 

where fAR is the costate variable of Hi, and the transversality conditions: 

(lOa) lim e - rt8i (t) = 0, 
t-->00 

(lOb) lim e -rtf8i(t)Hi(t) = 0. 

Obviously, V(Hi(T)) is the value of the property, including the land and the 
structure, to its owner. The costate of Hi, fAR, measures the marginal contribution 
of Hi to the value of the property, i.e., dVi(Hi(t))/dHi(t) where Hi is evaluated at 
the optimum. It is therefore the shadow price of the housing stock. Accordingly, 
equations (8a) and (8b) state that the marginal revenue product of the composite 
good input, Ci (in terms of the value of the property per unit of input) does not 
exceed its price (= 1), and is equal to the price of the composite good if the 
composite good input is positive. 

Rearranging, (9) may be reduced to 

(91) P + A= r,81- Alhl 

The left-hand side of (9') is the current income of a unit of housing in zone i. 
This includes the housing rent, Pi, and capital gains, fAR. The right-hand side is 
the cost of capital per unit of housing, r,8i, plus the depreciation, -,8ihl. Thus, 
equation (9') says that at the optimum the marginal cost equals the marginal 
revenue. 

The dwelling unit size is assumed to be flexible, i.e., change in the size of the 
dwelling units within the building is costless. Accordingly, equality between the 
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supply and demand for housing implies 

(I11) b (Pi (t), u (t))Nj (t) --= Hi (t), 

where Ni(t) is the number of households (workers) living in zone i at period t. Let 
N(t) be the total labor force and the total number of households in the city at 
time t, 

(12) Ni(t) N(t). 

Given the (exogenous) utility level, u(t), and productivity, w(t), the price of 
housing, Pi(t), is determined for each zone by (1). Given Pi(t) and the stock of 
housing, Hi(t), the number of households accommodated in each zone and in the 
city as a whole is determined by (11) and (12). 

The change in the housing stock depends on the expectation formation regime. 
Two extreme regimes are considered in the following discussion: myopic or naive 
expectations, and perfect foresight. According to the first, the developer consid- 
ers the current price and discount rate to prevail forever. He continuously 
modifies his expectations and therefore his plan, in accordance with the changes 
in the current price and interest rate. In the second case, Bellman's optimization 
principle implies that the plan does not change with time. 

In the case of perfect foresight, some basic relations can be established 
between the surplus of the city (to be defined hereafter) and city real-estate 
values, and between the competitive allocation and Pareto optimum allocation. 

The total production of the composite good by the city work force X(t), is: 

(13) X(t) = N(t)w(t). 

The city's current surplus or exports, S(t), is 

(14) S(t) = X(t)- {Nj(t)[z(Pj(t),u(t)) + Ti(t)] + Ci(t)}. 

It follows from (1), (11), (12), (13), and (14) that 

(15) S(t) = (HiPi-C). 

Hence, multiplying both sides by e-rt, integrating between T and oo, and 
summing over i, we have: 

(16) ' V(Hi(T)) = f -er(t-T)S(t) dt, 
i 1f 

which may be formulated as follows: 

PROPOSITION 1: If landlords have perfect foresight, the market value of the land 
and the structures of the city in any period T is equal to the present value of the 
surplus that would be realized between T and oo. 
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Furthermore, we have the following: 

PROPOSITION 2: If landlords have perfect foresight, the market equilibrium 
allocation maximizes the present value of the city surplus S(t) over Pi(t), Ci(t), 
Hi(t),Ni(t),N(t),X(t), for all i = 1,2, . .. , subject to (2), (3), (6), (7), (11), (12), 
and (13). 

PROOF: The necessary conditions of the optimization problem specified above 
are identical to the equilibrium conditions (1), (2), (3), (6), (7), (8a), (8b), (9), 
(lOa), (lOb), (11), (12). Q.E.D. 

Now define a competitive allocation in the economy as a whole as one where 
every worker is accommodated in one of the predetermined potential city sites. 
Formally, the above competitive allocation is defined by (1), (2), (3), (6), (7), (8), 
(9), (10), (11), and 

(17) EN/(t) =N(t), 0< t < oo, 

where NJ is the population of zone i in cityj(j = 1, . . . , J). Accordingly, u(t) is 
endogenously determined. Using this definition we have the following: 

PROPOSITION 3: Suppose that landlords have perfect foresight. Then: 
(a) Given the equilibrium u(t), the equilibrium allocation maximizes the present 

value of the surpluses of all the cities. 
(b) If the pure rate of time preference of a resident of the city equals the interest 

rate (i.e., the intertemporal utility level of a resident at time T is given by 
J? e- rtu(t) dt) and if the welfare level of landlords is an increasing function of the 

present value of the total surpluses of the cities (i.e., the value of their properties), 
then the competitive equilibrium is Pareto optimal. 

PROOF: (a) Add a superscriptj to denote a potential city. Then, consider the 
maximization of V* = Eje - rtSJ (t) dt over pi}(t), Ci/(t), Hi (t), Li (t), Ni/(t), NJ(t), 
XJ(t) subject to (2), (3), (6), (7), (11), (12), (13), and (14) where u(t) is evaluated 
at its equilibrium value. 

Relations (1)-(3), (6), (8)-(13), which describe the competitive equilibrium, can 
be shown to be consistent with the necessary conditions of the above maximiza- 
tion problem. It follows that the solution to the above maximization problem is 
identical to the competitive allocation. In particular, the solution for NiJ(t) is 
identical to the corresponding equilibrium function of time. Thus, we can use 
(17) as an additional constraint without changing the solution to the maximiza- 
tion problem. Consequently, given the equilibrium utility u(t) and the predeter- 
mined population size N(t), the present value of the total urban surplus, V*, is 
maximized as argued in the proposition. 

Part (b) follows from part (a) (see Hochman [11]). 
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3. THE GROWTH PATTERN OF A GIVEN ZONE 
WHEN THE ECONOMY IS IN STEADY STATE 

In this section we assume that the economy as a whole is in a steady state, 
such that the utility u(t) and the discount rate r(t) are constant. We also assume 
that the transportation costs, T(t), and productivity w(t) do not vary with time. 
Thus, ui(t) = w(t) = r(t) = T(t) = 0. In this case the plans of a landlord with 
naive expectations and of one with perfect foresight coincide. 

We shall derive the growth pattern in a given zone by examining the phase 
diagram corresponding to the necessary conditions considered in the previous 
section. As we shall show, the properties of the qualitative solution can be 
derived once we ascertain the position of C = constant, H = 0, and / = 0 in the 
(H, /3) plane and draw the phase diagram. We start by determining the positions 
of H = 0 and /3 = 0 and possible trajectories, to satisfy the conditions (2), (3), (4), 
(8), and (9). 

Differentiating (2) with H= 0, using (8a) as an equality, and using (4a), (4b), 
(4d) yields 

(18) d/3 / =3(hh122-2 h21) 
(111. )2 > 0. 

At the intersection of H= 0 and the /3 axes, C = 0. This follows from (2) with 
H = 0, (4e), and (4g). Thus, from (8a),13 

1 
(19) A3IH=H=O= h2(0, 0,L) 

Differentiating (8a) as an equality, assuming that the second order (sufficient) 
condition h11- hl2/h22 < 0 is satisfied,14 and using (4a), (4b), and (4d) yields: 

(20) d/3 /3h122-h?) < 0 
dH |=o c>0 (r-hl)h22+ hI2h2 

Also, for C= 0, we have by (9) and (4a): 

(21) dH/3 o 8hI< 

dH above - r-ho ?0. 
The above results allow us to prove: 

31It should be noted that the value of 8 fI=H= is not uniquely defined by (2) and (8a). However, 
our interest is in the upper limit of all the values of f8 belonging to this set, which is also the limit of 
/3(H)Ij=o when H approaches zero. Only this limit fulfills (19) and henceforth only this value is 
meant whenever f1Iff = H =0 is discussed. From (2) and (8a) it follows that strict equality in (8a) holds 
in this case, even though C is zero. 

'4The sufficient condition h1 -hl12/h12 < 0 states that the Hamiltonian of the optimization 
problem, evaluated at the optimal value of Ci, is a concave function of Hi for given values of 8i. For 
a proof of the sufficiency of this condition see Arrow and Kurz [3, Ch. II]. 
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LEMMA 1: (a) If p > [r - hI(0, 0, L)]/h2(0, 0, L), the loci H = 0, /3 = 0 inter- 
sect within the positive quadrant, at a finite value of H and /3, and (b) if p < [r - 
h1(0, 0, L)]/h2(0, 0, L), the two loci do not intersect in the positive quadrant. 

PROOF: Define: 

,u(C) = [r - hj(O,C,L)]1h2(0C, CL). 

Then, from (4b) we have: 

I. lim y(C)=oo, 
C-3*0o 

and by (4): 

I. a(C) h12 rh22 h1h22 > O 
h 2h h2 

Let C be the value of C at the intersection of the loci ,B = 0 and H= 0. Then, 
it follows from (8a) and (9) that: 

III. P < [r - h1(O, C, L)]/h2(0 C, L). 

In part (a) we have: 

IV. P >[r - h1(0,0,L)]/h2(0,0,L). 

I, II, and IV imply that III can be satisfied only if C > 0. Thus, (4b) and (8b) 
yield: 

flj~=H1 > 1 
8,iH0 

h2(0,C, L) h2(0,0,L) -IH= H=O 

The above chain, together with (18) and (4a), prove part (a) of Lemma 1. 

In part (b) we have: 

V. P <[r - h1(0,0,L)]/h2(0 O, L). 

If C > 0, then, by (8b): 

VI. P = [r - hl(O, C, L)]/h2(0, C, L), 

but then II, V, and VI imply a contradiction. Thus, C = 0, and, therefore: 

081~~=H=O< 
' H= H=O' 'Ii3= H=O? h2(0, 0, L) 

This chain, (18), and (21) yield part (b) of Lemma 1. Q.E.D. 
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Differentiating (2), (9), and (8a) as an equality (for C > 0), and using (4), we 
obtain: 

(23a) df3 r - h _ 1_h22>_ 

d' dH=O,C>O 

(23b) 
d 

,>0 
d3dH=C=O 

(23c) dH - 2 > 0, and 
d dH=O C >O0 

(23d) dH | = 
c11 dH=C=O=0 

The above analysis implies that for a zone i, where Pi > [r - h (0, 0, Li)]/ 
h2(0,0, Li), the possible trajectories consistent with (2), (3), (4), (8), and (9) are 
I-VI in Figure 1. However, relations (4a), (4b), and (4d) imply that H is bounded 
from above and h ( ) is concave in H and C. Therefore, extending Cass' Theorem 
[7] to our problem, it follows that the optimal paths are along the stable arms I 
and II. Thus, Lemma 1 and the above results imply: 

LEMMA 2: Let there be an initial condition, Hi(T) = Hi 2 0. Then the optimal 
path starts at HiT and follows the stable arm (I or II) towards the stationary state, 
,3 ??, H ??. 

If 

r - h1(0, 0, L) 

h2(0O,0Li) 

then, according to Lemma 1, ,B ?, H > 0. If 

r - h1(0,0,LL) 

h2(0,0,L1) 

H(oo) = 0, i.e., if H(T) = O the optimal strategy is to do nothing; if H(T) > 0, the 
optimal strategy is to let the stock decline to 0. 

It follows from (1) that Pi declines with Ti. Thus, the boundary of the city is in 
the first zone where Ti is so large that 

p < rh (0, 0, L) and therefore H?? = 0. 

The boundary can be at the smallest Ti. In this case either from the start or 
eventually there will be no city. 
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H co 

FIGURE 1. 

Now consider the loci of all ,B and H which satisfy /8h2= 1 for a given 
C = C = constant > 0. Differentiating (8a) as an equality yields: 

(24) >~j -0. 
dH cc- h2 

It intersects the ,B axis at 1/h2(0, C, L). In particular, if C = 0, it intersects the ,B 
axis where the locus H = 0 does. A comparison of (24) with (18) implies that, for 
a given H, the slope of the locus C = 0 is smaller than that of H = 0. 

Also, by (8a) as an equality: 

(25) d/> ___ 
O 

dC H=constant >2 

Equations (24) and (25) are used in Figure 2. 
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flhAH, C2, L)- 

/ ~~~AA2H, Cl, L) I 

I3h2(H, C X,L)= I 

f3h(H,0, L) = 1 

HZ H 

FIGURE 2. 

The implications of the analysis of this section are summarized in the following 
proposition: 

PROPOSITION 4: For a zone i where 

r -h1(O, ?, Li) 

h2(0, 0, L1) 

(a) Hi(T)H??e(t)'O for t?>, 

(b) Hi(T) ' HiC d[Hi(t)Pi-Ci(t)]/dt = S (t) <O, for t > T. 

(c) If Hi(T) = 0, then Si (T) < 0, 

(d) Si0o > 0, 

(e) (Hi (t)) ' 0 Hi(t) ' Hi??, and Vi(Hi(t)) > O for all t > 0, 

where Si = Ni (wi -z (Pi, u (t)) - T1) - C1. 

PROOF: Implication (a) follows from Figure 2. Implications (b) and (c) follow 
from Figure 2 and the analysis which implies equation (15). 
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Applying Euler's Theorem to (2) for H = 0, using (9) for ,B = 0, (8b) and the 
analysis which yields (15), it follows that: 

Sio? = f 3?(Hi??r + h3L1) > O, 

which proves (d). 
Let SC(t) be the current value Hamiltonian of our maximization problem, i.e. 

'Ci (t) = [Hj(t)Pj(t) - Ci(t)] + /3i(t)Hi(t); then, following Amott, Davidson and 
Pines [2]: 

Vi(t) = (JCi(t)/r) I [HiPi - Ci + 13.1] 

which upon differentiation (using (9)) yields: 

i = HA/3 + (ei( -1) / r). 

(8a) and (8b) imply that for C = C = 0 and C > 0 the second term must vanish. 
Thus, since /Ai > 0, and Hi < 0 Hi Hi', the first part of (e) is proved. 

As to the second part, it is clear that if Hi(t) > Hi', even a "do nothing" 
policy implies positive profits. A fortiori the optimal policy must yield positive 
profits, which means Vi(Hi(t)) > 0. If Hi(t) < H,??, we have only to show that 
for Hi = 0, Vi(0) > 0 (since, as already shown, Vi > 0). 

Using V(Hi(t)) = (l/r)XC(t), Hi(t) = 0, (8a) as an equality, and Euler's Theo- 
rem for h( ), we obtain: 

Vi(0) = 83h3Li/r > 0. 

The inequality follows from the discussion of Lemma 1 (C(O) > 0), and from 
(4c). This proves the second part of (e). Q.E.D. 

It follows from implications (b), (c), and (e) that for any zone being developed 
from scratch there exists a housing stock level Hi*, 0 < Hi* < H ?, where the 
zone ceases to be a net importer of resources and becomes a net exporter. 15 

4. THE SPATIAL PATTERN OF CITY GROWTH 
WHEN THE ECONOMY IS IN A STEADY STATE 

In this section the effect of accessibility on the growth pattern is analyzed. To 
facilitate the analysis, we assume henceforth that the city is divided up into zones 
of equal area (i.e., Li = L, i = 1, 2, . . ., ). 

15Note that in our model borrowing and lending of the composite good by landlords for an 
interest rate r is possible. Thus, when a zone (or the whole city) starts to develop it is a net borrower, 
and in the stationary state it may be a net lender. In our type of model where intragenerational 
transfers are impossible, intertemporal transfers (i.e., lending and borrowing) are possible only 
through accumulation of property (and houses). Hence, only those who may own property can lend 
and borrow. In the last section of this paper we allow workers to own property (positive or negative) 
as well and hence benefit from intertemporal transfers. Note, however, that unlike the productive 
sector, decisions concerning intertemporal transfers in consumption are made at the economy-wide 
level and hence are exogenously given to the individual city. 
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LEMMA 3: Let P' and Pm be two levels of rent paid to landlords for housing 
services. If pn > Ptm, then the equilibrium path corresponding to P' lies everywhere 
strictly above the one corresponding to pm. 

PROOF: First, we show that fn(oo) > Bm(oo), and H'(oo) > Hm(oo), where 
,8'(t) and H'(t) are the values of ,8 and H at time t corresponding to pi 
(i = n, m). Second, we show that the two equilibrium paths cannot intersect. 

To prove the first part we differentiate (8a) and (9) as an equality, and use the 
results to derive 

d,8 r - rh, + h2hl2lh22] > O. 
dp dH=3=O 

Thus, since the locus ,B = 0 shifts upward and locus H = 0 does not change, 
the stationary state points , ? and H move to the right and upward on H = 0. 

Regarding the second part, suppose the equilibrium paths intersect in the 
(/3H) plane. Then, it follows from (8b) that at the intersection, H and C are 
equal for the two paths. But then, it follows from (2) that HIm = HI and from (9) 
that /3f < /3m. This implies that the n intersects the m equilibrium trajectory from 
above. But in order to satisfy the first part, the n equilibrium trajectory must 
eventually intersect the m equilibrium trajectory from below, which is impossible. 

Q.E.D. 

It follows from (1) that Pi decreases with i, i.e., increases with the accessibility 
of the zone. Thus, Lemmas 1 and 3 imply the following proposition: 

PROPOSITION 5: If the initial stock of housing is zero, then: 
(a) The development takes place simultaneously in all the zones that are eventu- 

ally developed. 
(b) The more accessible the zone is, the higher the level of its housing stock H at 

any point of time and, of course, in the stationary state. 
(c) The more accessible the zone, the higher the value of its housing stock 

V(H(t)) (since V increases with H and P). 

5. THE CITY GROWTH PATTERN, WHEN THE 
ECONOMY IS NOT IN A STEADY STATE 

We begin the discussion by considering the case of naive expectations. The 
developer is assumed to maximize: 

V(H(T)) =J '[Hi(t)Pi(T) - Ci(t)]e-r(-T) dt 

subject to (2), (3), (6), and (7). 
First, consider the effect of an increase in Pi (s) such that up to time to, Pim 

prevails and thereafter Pi' where pin > pim. The change is reflected in an upward 
movement of locus ,B = 0 and (according to Lemma 3) an upward shift of the 
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equilibrium path. Thus, up to to the zone is developed according to the equilib- 
rium path corresponding to Pim. At to, AB jumps up to the equilibrium path 
corresponding to Pi' and the development continues according to this path. 

Second, suppose that Pi increases continuously, eventually converging to P ?, 
P?? < oo. The paths I, II, III, and IV in Figure 3 are consistent with such a 
continuous increase in Pi. 

A zone which is built from scratch is still developed continuously from the 
very beginning, as before, but ,B may now increase during some or perhaps all 
time intervals. Moreover, if the stock initially exceeds its stationary state level, it 
may first decline and then rise again towards the stationary state level (see 
Figure 3). 

Suppose that initially the zone is not developed since Pi is too small, such that 
condition (a) of Lemma 1 is not satisfied. Let Pi increase so that at some point of 
time, to, Pi reaches the level which satisfies this condition. From that time on, the 
zone is continuously developed. 

H=O 

l 
wA(X~~~~~~~)=0 

/ ~ ~ 
~~~~~~~~~~~~~~~I I 

I I H 
N H(O)=H0 

FIGURE 3. 
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3(0) 0 

H c= H (0) H 

FIGURE 4. 

Next, suppose that P decreases continuously and eventually converges to P??. 
The paths I, II, III, and IV in Figure 4 are consistent with this situation. In this 
case it is possible that overshooting will occur, i.e., the stock, after being 
accumulated to some level of H higher than the stationary state level, decreases 
to its stationary state level. Moreover, if Pi eventually decreases below [r - 
hi(O, 0, L)]/h2(O,0, L), the stock will decline and the zone will be totally aban- 
doned. 

Now we turn to analyzing the effect of a change in r. First, consider the effect 
of an increase in r. Similar to Lemma 3, which refers to a change in Pi, we can 
show the following lemma. 

LEMMA 4: If r' > rm, then the equilibrium path corresponding to rn lies every- 
where below that corresponding to rm. 
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PROOF: For a positive H the locus /3(H)j0=o is determined by (8) and (9). 
Their differentiation yields 

d,83 = -/[(r-hl) + hl2h2lh22 1 < 09 

dr dH=-O, C>O 

d/3 =-,81(r-hl) < ? 
dr dH== O, C=O 

where the inequality follows from (4a), (4b), and (4d). This implies that when r 
increases, the locus /3 = 0 in the (/,, H) plane shifts downward. The locus H = 0, 
which is independent of r, does not vary. Hence H'(oo) < Hm(oo) and /3'(oo) 
< /m(oo), and, as in Lemma 3, the whole path corresponding to r' is below the 
one corresponding to rm. Q.E.D. 

The effect of a continuous decrease in r converging to a finite r' is similar to 
that of a continuous increase of Pi converging to a finite P ?. This is reflected in 
Figure 3. The effect of a continuous increase in r is similar to the effect of a 
continuous decrease in P as reflected in Figure 4. 

In comparing the optimal path (o.p.) which corresponds to perfect foresight 
with the one that corresponds to naive expectation, we observe that when p 
increases (r decreases): 

(a) The stationary state (H??, /8 ?) is the same for the two paths. 
(b) For any given time period, t, /8(t) which corresponds to perfect foresight, 

should be above the stable arm which corresponds to naive expectation for that 
time period; only at infinity do they converge to the same point (H?, /3?0). 
Otherwise, the o.p. of the perfect expectation would not be able to converge to 
3 ?, H X as required by (a). 

(c) Given H, a higher /3 is associated with a higher rate of growth, H. This 
relation can easily be deduced from Figure 2, where, for a given H, a higher ,8 is 
associated with a higher value of C, and, therefore, according to equation (2), 
with a higher value of H. 

Observations (a) through (c) imply that the o.p. corresponding to perfect 
foresight will start with a higher value /3, than the one of naive expectation. 
Furthermore, at any given time period, the accumulated stock of housing H(t), 
under perfect foresight regime exceeds that of naive expectation. It is possible 
that a developer with perfect foresight will begin developing a zone which is still 
left undeveloped by a myopic developer. 

The opposite relations hold when P(t)(r(t)) is decreasing (increasing). For 
example, in this case a myopic developer may incur losses by developing a zone 
which a developer with perfect foresight would not develop at all. 

So far, we have examined how changes in r and P affect the equilibrium path. 
But as P itself is endogenous, we must relate Figures 3 and 4 to exogeneous 
variables such as u, w, and T. This can be done by using (1). Accordingly, P 
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increases when either u or T decreases, or w increases. Thus, Figure 3 corre- 
sponds to a decrease in either u or T, or an increase in w; Figure 4 corresponds 
to an opposite change in these variables. 

In a dynamic economy we may distinguish between two major states: (a) the 
steady state, and (b) a variable state approaching the steady state. The growth 
literature includes three basic types of dynamic models. The first is Solow's 
model, in which the rate of savings and regeneration are both given ex- 
ogeneously. In the second type, saving is endogenous but regeneration is still 
exogenous (Bardhan [4]). In the third type, the rate of regeneration is also 
determined endogeneously (Razin and Ben-Zion [20]). All these models are 
steady-state models with a positive rate of population growth, while the utility 
level and level of capital per capita (and thus the rate of return) are fixed, i.e., 
u = r = 0. In a single city, when P = 0 the rate of population growth attains its 
maximum value when the city begins to develop (N(O)/N(0) = oo) and its 
minimum value at infinity (N(oo) = 0); in between it exhibits a monotonic 
decreasing function. Thus, to maintain a constant population growth throughout 
the economy new cities have to be developed continuously. Thus, when the 
economy is in a steady state, ( = r = T = 0, which implies P = 0) new cities are 
started continuously, and their growth pattern, characterized by P = 0, is as 
described above.16 When the whole economy is in a variable state approaching 
steady state, both utility level and property value (land and housing) per capita 
are changing and approaching their steady state levels. In the models mentioned 
above, we distinguish two characteristic cases: ui > 0, r < 0; and ui < 0, r > 0. 
Thus, in an economy approaching a steady state, the net effect on P cannot be 
ascertained a priori. Therefore we cannot determine whether Figures 3 and 4, or 
a combination of the two, correspond to a growing economy. 

We now turn to the pattern of spatial development when the economy is not in 
a steady state. Suppose that either the utility level or the interest rate or both 
decline through time and converge to a certain positive level when t -* oo. Then 
all Pi(t) are monotonously increasing functions of time. Pi ?0, limtPi(t) = Pi 
< oo, where Pi' are the respective steady states of Pi, i = 1, 2, ... . The inequal- 
ity Pi(t) > Pj(t) when j > i holds for all t. Distant zones, which are not devel- 
oped at the beginning because Pi(0) is too low (see Lemma 1), are developed as 
time passes. 

Much more intriguing is the spatial pattern of development when the utility 
and/or the interest rate increase through time, in which case Pi decreases 
through time. Hence the boundary where the development takes place moves 

16In the models of a growing economy mentioned above there are no resources whose quantity is 
exhaustible, such as land. If there were, then a steady state with a positive growth rate would be 
impossible (see, for example, Hochman and Hochman [12], with the case of an undesirable local 
public good). Since land is a productive factor in our model, it is unlikely that such a steady state is 
indeed possible in an economy containing cities like ours. In this case, housing rents must vary with 
time; therefore our solution for P = 0 does not describe a real solution and is only instrumental for 
deriving the solutions to the other cases. 
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closer to the center as time passes. In the process of development, the housing 
stock accumulated beyond this stationary-state boundary deteriorates, decreases, 
and eventually vanishes. It may be abandoned even before it completely vanishes 
if the rent falls to zero fast enough. 

This spatial pattern is not characteristic of that observed in many growing 
metropolitan areas. On the contrary, the center often deteriorates while the fringe 
is developed and the boundary moves further out. This can be explained by a 
simultaneous increase in u and a decrease in Pi, coupled with a decrease in Ti, 
especially at the outer rings. The increase in u may imply a process of growth 
followed by deterioration throughout the city, but the relative advantage of the 
outer rings in transportation improvement can counterbalance or even outweigh 
the negative effect of the increase in u. 

Improvement of suburban roads and the increasing use of private cars has 
shortened commuting time from the outer zones, while commuting time from the 
inner zones has actually increased due to congestion caused by the increase in 
traffic volumes. Thus growth in suburban zones has been boosted sufficiently to 
offset the effects of deterioration there. No such boost has been given to the 
inner ring, which continues to decay and deteriorate. 

6. RESERVATIONS AND EXTENSIONS OF THE MODEL 

The model presented in this paper involves a number of restrictions, including 
the following: 

1. The depreciation is age-independent. 
2. The level of service of the transportation system is exogeneous. Both the 

congestion effect and investment in improving transportation service are ignored. 
3. The urban population is assumed to be homogeneous. 
4. Increasing returns to scale and economies of agglomeration in the produc- 

tion of the composite good are ignored. 
5. The city layout is unrealistic. 
6. City residents are assumed to live on their current wage and all landlords are 

absentees. 
Extending the model to remove restrictions 5 and 6 is not very difficult. We 

can assume, for example, that city residents earn 1T(t) nonwage income per 
period. This sum is exogenous to the city, since it is nationally determined 
(otherwise we cannot assume that the national urban population is homoge- 
neous). The effect of exogenously determined profits is similar to that of w(t); 
therefore its introduction does not complicate the analysis. 

Extending the model to remove restriction 4 will eliminate the absolute 
independence of the development in a particular zone from the development of 
the city as a whole. Some of the conclusions regarding the relation between the 
competitive allocation and optimality will no longer hold. Extension of the model 
to include economies of scale and agglomeration can be carried out along the 
lines suggested for a static case by Hochman [11]. With an appropriate govern- 
ment subsidy, financed by a tax on land rent, the optimum allocation can be 
achieved. The resulting dynamic analysis will not change, except that when the 
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economy is in a steady state N(t) < 0 w ii(t) < 0. The effect of changes in w(t) 
was discussed in Section 5. 

Much more intriguing is the extension of the model to remove restrictions 1-3. 
For example, with the introduction of congestion and investment in transporta- 
tion, the separability of this model to independent zones is completely lost and 
with it much of the simplicity of the analysis. We leave this extension, among 
others, for separate study. 
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